The Discrete-Dual Minimal-Residual Method (DDMRes) for Weak Advection-Reaction Problems in Banach Spaces

Muga I.; Tyler M.J.W.; Van Der Zee K.G.

Abstract

We propose and analyze a minimal-residual method in discrete dual norms for approximating the solution of the advection-reaction equation in a weak Banach-space setting. The weak formulation allows for the direct approximation of solutions in the Lebesgue L-p-space, 1 < p < infinity. The greater generality of this weak setting is natural when dealing with rough data and highly irregular solutions, and when enhanced qualitative features of the approximations are needed. We first present a rigorous analysis of the well-posedness of the underlying continuous weak formulation, under natural assumptions on the advection-reaction coeffidents. The main contribution is the study of several discrete subspace pairs guaranteeing the discrete stability of the method and quasi-optimality in L-p, and providing numerical illustrations of these findings, including the elimination of Gibbs phenomena, computation of optimal test spaces, and application to 2-D advection.

Más información

Título según WOS: The Discrete-Dual Minimal-Residual Method (DDMRes) for Weak Advection-Reaction Problems in Banach Spaces
Título según SCOPUS: The Discrete-Dual Minimal-Residual Method (DDMRes) for Weak Advection-Reaction Problems in Banach Spaces
Título de la Revista: COMPUTATIONAL METHODS IN APPLIED MATHEMATICS
Volumen: 19
Número: 3
Editorial: WALTER DE GRUYTER GMBH
Fecha de publicación: 2019
Página de inicio: 557
Página final: 579
Idioma: English
DOI:

10.1515/cmam-2018-0199

Notas: ISI, SCOPUS