Realizable lists via the spectra of block matrices
Abstract
In this paper we present spectral results for matrices partitioned into higher order blocks, where not all blocks are necessarily square. Using these results sufficient conditions on a given list to be the list of eigenvalues of a nonnegative matrix are obtained and the corresponding matrix is constructed, In particular, spectral results for symmetric matrices are derived. A result on Guo perturbations for permutative matrices on given lists is generalized. (C) 2019 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Realizable lists via the spectra of block matrices |
Título según SCOPUS: | Realizable lists via the spectra of block matrices |
Título de la Revista: | LINEAR ALGEBRA AND ITS APPLICATIONS |
Volumen: | 581 |
Editorial: | Elsevier Science Inc. |
Fecha de publicación: | 2019 |
Página de inicio: | 1 |
Página final: | 19 |
Idioma: | English |
DOI: |
10.1016/j.laa.2019.07.007 |
Notas: | ISI, SCOPUS |