Realizable lists via the spectra of block matrices

Medina L.; Nina H.

Abstract

In this paper we present spectral results for matrices partitioned into higher order blocks, where not all blocks are necessarily square. Using these results sufficient conditions on a given list to be the list of eigenvalues of a nonnegative matrix are obtained and the corresponding matrix is constructed, In particular, spectral results for symmetric matrices are derived. A result on Guo perturbations for permutative matrices on given lists is generalized. (C) 2019 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Realizable lists via the spectra of block matrices
Título según SCOPUS: Realizable lists via the spectra of block matrices
Título de la Revista: LINEAR ALGEBRA AND ITS APPLICATIONS
Volumen: 581
Editorial: Elsevier Science Inc.
Fecha de publicación: 2019
Página de inicio: 1
Página final: 19
Idioma: English
DOI:

10.1016/j.laa.2019.07.007

Notas: ISI, SCOPUS