A decomposition theorem for singular control systems on Lie groups

Ayala V.; Kliemann W.

Abstract

In this paper, we introduce the notion of a singular control system SG on a connected finite-dimensional Lie group G with Lie algebra g. This definition depends on a pair of derivations (E, D) of g where E plays the same roll as the singular matrix defining S?n and D induces the drift vector field of the system. Associated to E we construct a principal fibre bundle and an invariant connection which allow to us to obtain a decomposition result for SG via two subsystems: a linear control system and a differential-algebraic control system. We give an example on the simply connected Heisenberg Lie group of dimension three.

Más información

Título según WOS: A decomposition theorem for singular control systems on Lie groups
Título según SCOPUS: A decomposition theorem for singular control systems on lie groups
Título de la Revista: COMPUTERS & MATHEMATICS WITH APPLICATIONS
Volumen: 45
Número: 04-may
Editorial: PERGAMON-ELSEVIER SCIENCE LTD
Fecha de publicación: 2003
Página de inicio: 635
Página final: 646
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0898122103000232
DOI:

10.1016/S0898-1221(03)00023-2

Notas: ISI, SCOPUS