A decomposition theorem for singular control systems on Lie groups
Abstract
In this paper, we introduce the notion of a singular control system SG on a connected finite-dimensional Lie group G with Lie algebra g. This definition depends on a pair of derivations (E, D) of g where E plays the same roll as the singular matrix defining S?n and D induces the drift vector field of the system. Associated to E we construct a principal fibre bundle and an invariant connection which allow to us to obtain a decomposition result for SG via two subsystems: a linear control system and a differential-algebraic control system. We give an example on the simply connected Heisenberg Lie group of dimension three.
Más información
Título según WOS: | A decomposition theorem for singular control systems on Lie groups |
Título según SCOPUS: | A decomposition theorem for singular control systems on lie groups |
Título de la Revista: | COMPUTERS & MATHEMATICS WITH APPLICATIONS |
Volumen: | 45 |
Número: | 04-may |
Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
Fecha de publicación: | 2003 |
Página de inicio: | 635 |
Página final: | 646 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0898122103000232 |
DOI: |
10.1016/S0898-1221(03)00023-2 |
Notas: | ISI, SCOPUS |