Build Your Bioprocess on a Solid Strain-beta-Carotene Production in Recombinant Saccharomyces cerevisiae

López J.; Cataldo V.F.; Peña M.; Saa P.A.; Saitua F.; Ibaceta M.; Agosin E.

Abstract

Robust fermentation performance of microbial cell factories is critical for successful scaling of a biotechnological process. From shake flask cultivations to industrial-scale bioreactors, consistent strain behavior is fundamental to achieve the production targets. To assert the importance of this feature, we evaluated the impact of the yeast strain design and construction method on process scalability -from shake flasks to bench-scale fed-batch fermentations-using two recombinant Saccharomyces cerevisiae strains capable of producing beta-carotene; SM14 and beta car1.2 strains. SM14 strain, obtained previously from adaptive evolution experiments, was capable to accumulate up to 21 mg/g(DCW) of beta-carotene in 72 h shake flask cultures; while the beta car1.2, constructed by overexpression of carotenogenic genes, only accumulated 5.8 mg/g(DCW) of carotene. Surprisingly, fed-batch cultivation of these strains in 1L bioreactors resulted in opposite performances. beta car1.2 strain reached much higher biomass and beta-carotene productivities (1.57 g/L/h and 10.9 mg/L/h, respectively) than SM14 strain (0.48 g/L/h and 3.1 mg/L/h, respectively). Final beta-carotene titers were 210 and 750 mg/L after 80 h cultivation for SM14 and beta car1.2 strains, respectively. Our results indicate that these substantial differences in fermentation parameters are mainly a consequence of the exacerbated Crabtree effect of the SM14 strain. We also found that the strategy used to integrate the carotenogenic genes into the chromosomes affected the genetic stability of strains, although the impact was significantly minor. Overall, our results indicate that shake flasks fermentation parameters are poor predictors of the fermentation performance under industrial-like conditions, and that appropriate construction designs and performance tests must be conducted to properly assess the scalability of the strain and the bioprocess.

Más información

Título según WOS: Build Your Bioprocess on a Solid Strain-beta-Carotene Production in Recombinant Saccharomyces cerevisiae
Título según SCOPUS: Build your bioprocess on a solid strain-?-carotene production in recombinant saccharomyces cerevisiae
Título de la Revista: FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY
Volumen: 7
Editorial: FRONTIERS MEDIA SA
Fecha de publicación: 2019
Idioma: English
DOI:

10.3389/fbioe.2019.00171

Notas: ISI, SCOPUS