SUBDIFFERENTIAL FORMULAE FOR THE SUPREMUM OF AN ARBITRARY FAMILY OF FUNCTIONS

Pérez-Aros P.

Abstract

This work provides calculus rules for the Frechet and Mordukhovich subdifferentials of the pointwise supremum given by an arbitrary family of lower semicontinuous functions. We start our study by showing fuzzy results about the Frechet subdifferential of the supremum function. Subsequently, we study the Mordukhovich subdifferential of the supremum function in finite- and infinite-dimensional settings. Finally, we apply our results to the study of the convex subdifferential; here we recover general formulae for the subdifferential of an arbitrary family of convex functions.

Más información

Título según WOS: SUBDIFFERENTIAL FORMULAE FOR THE SUPREMUM OF AN ARBITRARY FAMILY OF FUNCTIONS
Título según SCOPUS: Subdifferential formulae for the supremum of an arbitrary family of functions
Título de la Revista: SIAM JOURNAL ON OPTIMIZATION
Volumen: 29
Número: 2
Editorial: SIAM PUBLICATIONS
Fecha de publicación: 2019
Página de inicio: 1714
Página final: 1743
Idioma: English
DOI:

10.1137/17M1163141

Notas: ISI, SCOPUS