Theoretical Advances in Lebesgue-sampling-based Prognostic Algorithms

Acuna D.E.; Orchard M.E.; Reyes C.; Zhang B.

Abstract

Lebesgue-sampling-based prognostic algorithms have demonstrated computational advantages and execution time savings of several orders of magnitude over Riemman-based prognostic methods. In this regard, some remarkable achievements have been obtained when using Lebesgue-sampling (LS) methods to build empirical degradation models in terms of statistics of the Time-of-Failure distribution, such as the Just-in-Time Point (JITP). This article studies some theoretical issues related to the implementation of LS-based prognostic methods, and analyzes the impact associated with the utilization of alternative procedures for the computation of Time-of-Failure probability density function statistics.

Más información

Título según WOS: Theoretical Advances in Lebesgue-sampling-based Prognostic Algorithms
Título según SCOPUS: Theoretical Advances in Lebesgue-Sampling-Based Prognostic Algorithms
Título de la Revista: 2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018)
Editorial: IEEE
Fecha de publicación: 2019
Página de inicio: 7
Página final: 12
Idioma: English
DOI:

10.1109/PHM-Paris.2019.00009

Notas: ISI, SCOPUS