Predicting Asthma Using Clinical Indexes

Castro-Rodriguez J.A.; Cifuentes L.; Martinez, F. D.

Abstract

Asthma is no longer considered a single disease, but a common label for a set of heterogeneous conditions with shared clinical symptoms but associated with different cellular and molecular mechanisms. Several wheezing phenotypes coexist at preschool age but not all preschoolers with recurrent wheezing develop asthma at school-age; and since at the present no accurate single screening test using genetic or biochemical markers has been developed to determine which preschooler with recurrent wheezing will have asthma at school age, the asthma diagnosis still needs to be based on clinical predicted models or scores. The purpose of this review is to summarize the existing and most frequently used asthma predicting models, to discuss their advantages/disadvantages, and their accomplishment on all the necessary consecutive steps for any predictive model. Seven most popular asthma predictive models were reviewed (original API, Isle of Wight, PIAMA, modified API, ucAPI, APT Leicestersher, and ademAPI). Among these, the original API has a good positive LR similar to 7.4 (increases the probability of a prediction of asthma by 2-7 times), and it is also simple: it only requires four clinical parameters and a peripheral blood sample for eosinophil count. It is thus an easy model to use in any rural or urban health care system. However, because its negative LR is not good, it cannot be used to rule out the development of asthma.

Más información

Título según WOS: Predicting Asthma Using Clinical Indexes
Título según SCOPUS: Predicting asthma using clinical indexes
Título de la Revista: FRONTIERS IN PEDIATRICS
Volumen: 7
Editorial: FRONTIERS MEDIA SA
Fecha de publicación: 2019
Idioma: English
DOI:

10.3389/fped.2019.00320

Notas: ISI, SCOPUS