ON THE UNIQUENESS OF BOUND STATE SOLUTIONS OF A SEMILINEAR EQUATION WITH WEIGHTS

Cortázar C.; García-Huidobro M.; Herreros P.

Abstract

We consider radial solutions of a general elliptic equation involving a weighted Laplace operator. We establish the uniqueness of the radial bound state solutions to div(A del v) + Bf(v) = 0, lim(vertical bar x vertical bar ->+infinity) v(x) 0, x is an element of R-n, (P) n > 2, where A and B are two positive, radial, smooth functions defined on R-n {0}. We assume that the nonlinearity f is an element of C(-c, c), 0 < c <= infinity is an odd function satisfying some convexity and growth conditions, and has a zero at b > 0, is non positive and not identically 0 in (0, b), positive in (b, c), and is differentiable in (0, c).

Más información

Título según WOS: ON THE UNIQUENESS OF BOUND STATE SOLUTIONS OF A SEMILINEAR EQUATION WITH WEIGHTS
Título según SCOPUS: On the uniqueness of bound state solutions of a semilinear equation with weights
Título de la Revista: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
Volumen: 39
Número: 11
Editorial: AMER INST MATHEMATICAL SCIENCES-AIMS
Fecha de publicación: 2019
Página de inicio: 6761
Página final: 6784
Idioma: English
DOI:

10.3934/dcds.2019294

Notas: ISI, SCOPUS