DEGREE CONDITIONS FOR EMBEDDING TREES
Abstract
We conjecture that every graph of minimum degree at least k/2 and maximum degree at least 2k contains all trees with k edges as subgraphs. We prove an approximate version of this conjecture for trees of bounded degree and dense host graphs. Our result relies on a general embedding tool for embedding trees into graphs of certain structure. This tool also has implications for the Erdos-Sos conjecture and the 2/3-conjecture. We prove an approximate version of both conjectures for bounded degree trees and dense host graphs.
Más información
| Título según WOS: | DEGREE CONDITIONS FOR EMBEDDING TREES |
| Título según SCOPUS: | Degree conditions for embedding trees |
| Título de la Revista: | SIAM JOURNAL ON DISCRETE MATHEMATICS |
| Volumen: | 33 |
| Número: | 3 |
| Editorial: | SIAM PUBLICATIONS |
| Fecha de publicación: | 2019 |
| Página de inicio: | 1521 |
| Página final: | 1555 |
| Idioma: | English |
| DOI: |
10.1137/18M1210861 |
| Notas: | ISI, SCOPUS |