A FEM-DtN formulation for a non-linear exterior problem in incompressible elasticity
Abstract
In this paper, we combine the usual finite element method with a Dirichlet-to-Neumann (DtN) mapping, derived in terms of an infinite Fourier series, to study the solvability and Galerkin approximations of an exterior transmission problem arising in non-linear incompressible 2d-elasticity. We show that the variational formulation can be written in a Stokes-type mixed form with a linear constraint and a non-linear main operator. Then, we provide the uniqueness of solution for the continuous and discrete formulations, and derive a Cea-type estimate for the associated error. In particular, our error analysis considers the practical case in which the DtN mapping is approximated by the corresponding finite Fourier series. Finally, a reliable a posteriori error estimate, well suited for adaptive computations, is also given. Copyright © 2003 John Wiley & Sons, Ltd.
Más información
Título según WOS: | A FEM-DtN formulation for a non-linear exterior problem in incompressible elasticity |
Título según SCOPUS: | A FEM-DtN formulation for a non-linear exterior problem in incompressible elasticity |
Título de la Revista: | MATHEMATICAL METHODS IN THE APPLIED SCIENCES |
Volumen: | 26 |
Número: | 2 |
Editorial: | Wiley |
Fecha de publicación: | 2003 |
Página de inicio: | 151 |
Página final: | 170 |
Idioma: | English |
URL: | http://doi.wiley.com/10.1002/mma.349 |
DOI: |
10.1002/mma.349 |
Notas: | ISI, SCOPUS |