Glycine Betaine Effect on Dormancy in Deinococcus sp. UDEC-P1 and Psychrobacter sp. UDEC-A5 Exposed to Hyperosmotic Stress

Gonzalez K.; Parra B.; Smith C.T.; Martinez M.

Abstract

Bacteria under stress increase the proportion of dormant cells to ensure their survival. Cold and osmotic stress are similar, because in both the availability of water is reduced. Glycine betaine (GB) is one of the most common osmoprotectants in bacteria and possesses cryoprotectant properties. Our aim was to determine whether GB modifies the proportion of dormant Deinococcus sp. UDEC-P1 and Psychrobacter sp. UDEC-A5 cells exposed to osmotic stress. Both bacterial strains were incubated in the presence of up to 1 M NaCl with or without GB. Active and dormant cells were evaluated by both spectrophotometric and flow cytometry analysis. Without GB, Deinococcus sp. UDEC-P1 grew in the presence of 0.05 M NaCl, but with 5 mM GB grew at 0.1 M NaCl. Psychrobacter sp. UDEC-A5 grew in the presence of up to 0.25 M NaCl, but with 5 mM GB grew at 0.5 M NaCl. Under osmotic stress, the proportion of dormant cells of Deinococcus sp. UDEC-P1 and Psychrobacter sp. UDEC-A5 increased significantly (about eightfold and fivefold, respectively). The addition of GB (5 mM) exerted a different effect on the two strains, since it avoided the entrance into the dormancy of Psychrobacter sp. UDEC-A5 cells, but not of Deinococcus sp. UDEC-P1 cells. Our results suggest that the effect of GB on bacterial metabolism is strain dependent. For bacteria in which GB avoids dormancy, such as Psychrobacter sp. UDEC-A5, it could be a "double-edged sword" by reducing the "seed bank" available to recover the active population when favorable conditions return.

Más información

Título según WOS: Glycine Betaine Effect on Dormancy in Deinococcus sp. UDEC-P1 and Psychrobacter sp. UDEC-A5 Exposed to Hyperosmotic Stress
Título según SCOPUS: Glycine Betaine Effect on Dormancy in Deinococcus sp. UDEC-P1 and Psychrobacter sp. UDEC-A5 Exposed to Hyperosmotic Stress
Título de la Revista: CURRENT MICROBIOLOGY
Volumen: 76
Número: 12
Editorial: Springer
Fecha de publicación: 2019
Página de inicio: 1435
Página final: 1442
Idioma: English
DOI:

10.1007/s00284-019-01763-z

Notas: ISI, SCOPUS