A PRIORI ERROR ESTIMATES FOR THE OPTIMAL CONTROL OF THE INTEGRAL FRACTIONAL LAPLACIAN
Abstract
We design and analyze solution techniques for a linear-quadratic optimal control problem involving the integral fractional Laplacian. We derive existence and uniqueness results, first-order optimality conditions, and regularity estimates for the optimal variables. We propose two strategies to discretize the fractional optimal control problem: a semidiscrete approach, where the control is not discretized-the so-called variational discretization approach; and a fully discrete approach, where the control variable is discretized with piecewise constant functions. Both schemes rely on the discretization of the state equation with the finite element space of continuous piecewise polynomials of degree one. We derive a priori error estimates for both solution techniques. We illustrate the theory with two-dimensional numerical tests.
Más información
Título según WOS: | A PRIORI ERROR ESTIMATES FOR THE OPTIMAL CONTROL OF THE INTEGRAL FRACTIONAL LAPLACIAN |
Título según SCOPUS: | A priori error estimates for the optimal control of the integral fractional Laplacian |
Título de la Revista: | SIAM JOURNAL ON CONTROL AND OPTIMIZATION |
Volumen: | 57 |
Número: | 4 |
Editorial: | SIAM PUBLICATIONS |
Fecha de publicación: | 2019 |
Página de inicio: | 2775 |
Página final: | 2798 |
Idioma: | English |
DOI: |
10.1137/18M1219989 |
Notas: | ISI, SCOPUS |