Explicit methods for attribute weighting in multi-attribute decision-making: a review study

Pena J.; Nápoles G.; Salgueiro Y.

Abstract

Attribute weighting is a key aspect when modeling multi-attribute decision analysis problems. Despite the large number of proposals reported in the literature, reaching a consensus on the most convenient method for a certain scenario is difficult, if not impossible. As a first contribution of this paper, we propose a categorization of existing methodologies, which goes beyond the current taxonomy (subjective, objective, hybrid). As a second contribution, supported by the new categorization, we survey and critically discuss the explicit weighting methods (which are closely related to the subjective ones). The critical discussion allows evaluating how much a solution can deviate from the expected one if no foresight is taken. As a final contribution, we summarize the main drawbacks from a global perspective and propose some insights to correct them. Such a discussion attempts to improve the reliability of decision support systems involving human experts.

Más información

Título según WOS: Explicit methods for attribute weighting in multi-attribute decision-making: a review study
Título según SCOPUS: Explicit methods for attribute weighting in multi-attribute decision-making: a review study
Título de la Revista: ARTIFICIAL INTELLIGENCE REVIEW
Volumen: 53
Número: 5
Editorial: Springer
Fecha de publicación: 2019
Idioma: English
DOI:

10.1007/S10462-019-09757-W

Notas: ISI, SCOPUS