Bispectral Dual Difference Equations for the Quantum Toda Chain with Boundary Perturbations
Abstract
We show that hyperoctahedral Whittaker functions-diagonalizing an open quantum Toda chain with one-sided boundary potentials of Morse type-satisfy a dual system of difference equations in the spectral variable. This extends a well-known bispectral duality between the nonperturbed open quantum Toda chain and a strong-coupling limit of the rational Macdonald-Ruijsenaars difference operators. It is manifest from the difference equations in question that the hyperoctahedral Whittaker function is entire as a function of the spectral variable.
Más información
| Título según WOS: | Bispectral Dual Difference Equations for the Quantum Toda Chain with Boundary Perturbations |
| Título según SCOPUS: | Bispectral Dual Difference Equations for the Quantum Toda Chain with Boundary Perturbations |
| Título de la Revista: | INTERNATIONAL MATHEMATICS RESEARCH NOTICES |
| Volumen: | 2019 |
| Número: | 12 |
| Editorial: | OXFORD UNIV PRESS |
| Fecha de publicación: | 2019 |
| Página de inicio: | 3740 |
| Página final: | 3767 |
| Idioma: | English |
| DOI: |
10.1093/imrn/rnx219 |
| Notas: | ISI, SCOPUS |