Bispectral Dual Difference Equations for the Quantum Toda Chain with Boundary Perturbations

Abstract

We show that hyperoctahedral Whittaker functions-diagonalizing an open quantum Toda chain with one-sided boundary potentials of Morse type-satisfy a dual system of difference equations in the spectral variable. This extends a well-known bispectral duality between the nonperturbed open quantum Toda chain and a strong-coupling limit of the rational Macdonald-Ruijsenaars difference operators. It is manifest from the difference equations in question that the hyperoctahedral Whittaker function is entire as a function of the spectral variable.

Más información

Título según WOS: Bispectral Dual Difference Equations for the Quantum Toda Chain with Boundary Perturbations
Título según SCOPUS: Bispectral Dual Difference Equations for the Quantum Toda Chain with Boundary Perturbations
Título de la Revista: INTERNATIONAL MATHEMATICS RESEARCH NOTICES
Volumen: 2019
Número: 12
Editorial: OXFORD UNIV PRESS
Fecha de publicación: 2019
Página de inicio: 3740
Página final: 3767
Idioma: English
DOI:

10.1093/imrn/rnx219

Notas: ISI, SCOPUS