Commutative non-power-associative algebras
Abstract
We study commutative algebras satisfying the identity (xx)(xx) - lambda((xx)x)x = 0. It is known that for lambda = 1 and for characteristic not 2,3 or 5, the algebra is a commutative power-associative algebra. These algebras have been widely studied by Albert, Gerstenhaber and Schafer. For lambda = 0, Guzzo and Behn in 2014 proved that commutative algebras of dimension <= 7 satisfying (xx)(xx) = 0 are solvable. We consider the remaining values of lambda. We prove that commutative algebras satisfying (xx)(xx)-lambda((xx)x)x = 0 with lambda not equal 0, 1, and generated by one element are nilpotent of nilindex <= 8 (we assume characteristic of the field not equal 2, 3).
Más información
| Título según WOS: | Commutative non-power-associative algebras |
| Título según SCOPUS: | Commutative non-power-associative algebras |
| Título de la Revista: | INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION |
| Volumen: | 29 |
| Número: | 8 |
| Editorial: | World Scientific |
| Fecha de publicación: | 2019 |
| Página de inicio: | 1527 |
| Página final: | 1539 |
| Idioma: | English |
| DOI: |
10.1142/S0218196719500619 |
| Notas: | ISI, SCOPUS |