Invariant measures for actions of congruent monotileable amenable groups

Cecchi P.; Cortez M.I.

Abstract

In this paper we show that for every congruent monotileable amenable group G and for every metrizable Choquet simplex K, there exists a minimal G-subshift, which is free on a full measure set, whose set of invariant probability measures is affine homeomorphic to K. If the group is virtually abelian, the subshift is free. Congruent monotileable amenable groups are a generalization of amenable residually finite groups. In particular, we show that this class contains all the infinite countable virtually nilpotent groups. This article is a generalization to congruent monotileable amenable groups of one of the principal results shown in [3] for residually finite groups.

Más información

Título según WOS: Invariant measures for actions of congruent monotileable amenable groups
Título según SCOPUS: Invariant measures for actions of congruent monotileable amenable groups
Título de la Revista: GROUPS GEOMETRY AND DYNAMICS
Volumen: 13
Número: 3
Editorial: EUROPEAN MATHEMATICAL SOC-EMS
Fecha de publicación: 2019
Página de inicio: 821
Página final: 839
Idioma: English
DOI:

10.4171/GGD/506

Notas: ISI, SCOPUS