Multi-bump ground states of the Gierer-Meinhardt system in R-2
Abstract
We consider the stationary Gierer-Meinhardt system in ?2: ?A - A + A2H = 0 in ?2, ?H - ? 2 H + A2 = 0 in ?2, A, H > 0; A, H ? 0 as |x| ? + ?. We construct multi-bump ground-state solutions for this system for all sufficiently small ?. The centers of these bumps are located at the vertices of a regular polygon, while the bumps resemble, after a suitable scaling in their A-coordinate, the unique radially symmetric solution of ?w - w + w2 = 0 in ?2, 0 < w (y) ? 0 as |y| ? ?. A similar construction is made for vertices of two concentric polygons and a general procedure for detection of organized finite patterns is suggested. © 2003 Éditions scientifiques et médicales Elsevier SAS.
Más información
Título según WOS: | Multi-bump ground states of the Gierer-Meinhardt system in R-2 |
Título según SCOPUS: | Multi-bump ground states of the gierer-meinhardt system in ? 2 |
Título de la Revista: | ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE |
Volumen: | 20 |
Número: | 1 |
Editorial: | GAUTHIER-VILLARS/EDITIONS ELSEVIER |
Fecha de publicación: | 2003 |
Página de inicio: | 53 |
Página final: | 85 |
Idioma: | English |
DOI: |
10.1016/S0294-1449(02)00024-0 |
Notas: | ISI, SCOPUS |