On critical exponents for the Pucci's extremal operators

Felmer, PL; Quaas, A

Abstract

In this article we study some results on the existence of radially symmetric, non-negative solutions for the nonlinear elliptic equation M ?,?+(D2u)+up = 0inRN. Here N?3, p > 1 and M?,?+ denotes the Pucci's extremal operators with parameters 0<? ? ?. The goal is to describe the solution set in function of the parameter p. We find critical exponents 1<p *+<pp+ that satisfy: (i) If 1<p<p*+ then there is no non-trivial radial solution of (*). (ii) If p = p*+ then there is a unique fast decaying radial solution of (*). (iii) If p*+<p ? pp+ then there is a unique pseudo-slow decaying radial solution to (*). (iv) If pp+<p then there is a unique slow decaying radial solution to (*). Similar results are obtained for the operator M?,?-. © 2003 Éditions scientifiques et médicales Elsevier SAS.

Más información

Título según WOS: On critical exponents for the Pucci's extremal operators
Título según SCOPUS: On critical exponents for the Pucci's extremal operators
Título de la Revista: ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE
Volumen: 20
Número: 5
Editorial: GAUTHIER-VILLARS/EDITIONS ELSEVIER
Fecha de publicación: 2003
Página de inicio: 843
Página final: 865
Idioma: German
DOI:

10.1016/S0294-1449(03)00011-8/FLA

Notas: ISI, SCOPUS