Optimal lower bounds for multiple recurrence
Abstract
Let (Xm B, mu, T) be an ergodic measure-preserving system, let A is an element of B and let epsilon > 0. We study the largeness of sets of the form S = { n is an element of N: mu(A boolean AND T-f(1)((n)) A boolean AND T-f2(n) A boolean AND center dot center dot center dot boolean AND T-f(k)((n)) A) > mu (A)(K+1) - epsilon} for various families {f(1); ..., f(k}) g of sequences f(i) (p(n)) N -> N. For k <= 3 and f(i) (n) = i f(n), we show that S has positive density if f(n) D q = p(n), where q is an element of Z[x ] satisfies q (1) or q(-1) = 0 and p(n) denotes the nth prime; or when f is a certain Hardy field sequence. f(i)(n) T-q is ergodic for some q is an element of N, then, for all r is an element of Z, S is syndetic if f (n) = qn + r. For f(i)(n) = a(i)n, where ai are distinct integers, we show that S can be empty for k >= 4, and, for k D 3, we found an interesting relation between the largeness of S and the abundance of solutions to certain linear equations in sparse sets of integers. We also provide some partial results when the fi are distinct polynomials.
Más información
Título según WOS: | Optimal lower bounds for multiple recurrence |
Título según SCOPUS: | Optimal lower bounds for multiple recurrence |
Título de la Revista: | ERGODIC THEORY AND DYNAMICAL SYSTEMS |
Volumen: | 41 |
Número: | 2 |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2019 |
Idioma: | English |
DOI: |
10.1017/ETDS.2019.72 |
Notas: | ISI, SCOPUS |