The Becker-Doring Process: Pathwise Convergence and Phase Transition Phenomena
Abstract
In this note, we study an infinite reaction network called the stochastic Becker-Doring process, a sub-class of the general coagulation-fragmentation models. We prove pathwise convergence of the process towards the deterministic Becker-Doring equations which improves classical tightness-based results. Also, we show by studying the asymptotic behavior of the stationary distribution, that the phase transition property of the deterministic model is also present in the finite stochastic model. Such results might be interpreted closed to the so-called gelling phenomena in coagulation models. We end with few numerical illustrations that support our results.
Más información
Título según WOS: | The Becker-Doring Process: Pathwise Convergence and Phase Transition Phenomena |
Título según SCOPUS: | The Becker–Döring Process: Pathwise Convergence and Phase Transition Phenomena |
Título de la Revista: | JOURNAL OF STATISTICAL PHYSICS |
Volumen: | 177 |
Número: | 3 |
Editorial: | Springer |
Fecha de publicación: | 2019 |
Página de inicio: | 506 |
Página final: | 527 |
Idioma: | English |
DOI: |
10.1007/s10955-019-02377-2 |
Notas: | ISI, SCOPUS |