Minimal geometric deformation in a Reissner-Nordstrom background

Rincón Á.; Gabbanelli L.; Contreras E.; Tello-Ortiz F.

Abstract

This article is devoted to the study of new exact analytical solutions in the background of Reissner-Nordstrom space-time by using gravitational decoupling via minimal geometric deformation approach. To do so, we impose the most general equation of state, relating the components of the theta-sector in order to obtain the new material contributions and the decoupler function f (r). Besides, we obtain the bounds on the free parameters of the extended solution to avoid new singularities. Furthermore, we show the finitude of all thermodynamic parameters of the solution such as the effective density (rho) over tilde, radial (p) over tilde (r) and tangential (p) over tilde (t) pressure for different values of parameter alpha and the total electric charge Q. Finally, the behavior of some scalar invariants, namely the Ricci R and Kretshmann R-mu nu omega epsilon R-mu nu omega epsilon scalars are analyzed. It is also remarkable that, after an appropriate limit, the deformed Schwarzschild black hole solution always can be recovered.

Más información

Título según WOS: Minimal geometric deformation in a Reissner-Nordstrom background
Título según SCOPUS: Minimal geometric deformation in a Reissner–Nordström background
Título de la Revista: EUROPEAN PHYSICAL JOURNAL C
Volumen: 79
Número: 10
Editorial: Springer
Fecha de publicación: 2019
Idioma: English
DOI:

10.1140/epjc/s10052-019-7397-9

Notas: ISI, SCOPUS