AN ADAPTIVE FEM FOR THE POINTWISE TRACKING OPTIMAL CONTROL PROBLEM OF THE STOKES EQUATIONS

Allendes A.; Fuica F.; Otarola E.; Quero D.

Abstract

We propose and analyze a reliable and efficient a posteriori error estimator for the pointwise tracking optimal control problem of the Stokes equations. This linear-quadratic optimal control problem entails the minimization of a cost functional that involves point evaluations of the velocity field that solves the state equations. This leads to an adjoint problem with a linear combination of Dirac measures as a forcing term and whose solution exhibits reduced regularity properties. We also consider constraints on the control variable. The proposed a posteriori error estimator can be decomposed as the sum of four contributions: three contributions related to the discretization of the state and adjoint equations and another contribution that accounts for the discretization of the control variable. On the basis of the devised a posteriori error estimator, we design a simple adaptive strategy that illustrates our theory and exhibits a competitive performance.

Más información

Título según WOS: AN ADAPTIVE FEM FOR THE POINTWISE TRACKING OPTIMAL CONTROL PROBLEM OF THE STOKES EQUATIONS
Título según SCOPUS: An adaptive FEM for the pointwise tracking optimal control problem of the Stokes equations
Título de la Revista: SIAM JOURNAL ON SCIENTIFIC COMPUTING
Volumen: 41
Número: 5
Editorial: SIAM PUBLICATIONS
Fecha de publicación: 2019
Página de inicio: A2967
Página final: A2998
Idioma: English
DOI:

10.1137/18M1222363

Notas: ISI, SCOPUS