Decomposition of Jacobian varieties of curves with dihedral actions via equisymmetric stratification
Abstract
Given a compact Riemann surface X with an action of a finite group G, the group algebra Q[G] provides an isogenous decomposition of its Jacobian variety JX, known as the group algebra decomposition of JX. We consider the set of equisymmetric Riemann surfaces M(2n -1, D-2n, theta) for all n >= 2. We study the group algebra decomposition of the Jacobian JX of every curve X is an element of M (2n - 1, D-2n, theta) for all admissible actions, and we provide affine models for them. We use the topological equivalence of actions on the curves to obtain facts regarding its Jacobians. We describe some of the factors of JX as Jacobian (or Prym) varieties of intermediate coverings. Finally, we compute the dimension of the corresponding Shimura domains.
Más información
Título según WOS: | Decomposition of Jacobian varieties of curves with dihedral actions via equisymmetric stratification |
Título según SCOPUS: | Decomposition of Jacobian varieties of curves with dihedral actions via equisymmetric stratification |
Título de la Revista: | REVISTA MATEMATICA IBEROAMERICANA |
Volumen: | 35 |
Número: | 4 |
Editorial: | EUROPEAN MATHEMATICAL SOC |
Fecha de publicación: | 2019 |
Página de inicio: | 1259 |
Página final: | 1279 |
Idioma: | English |
DOI: |
10.4171/RMI/1084 |
Notas: | ISI, SCOPUS |