Decomposition of Jacobian varieties of curves with dihedral actions via equisymmetric stratification

Izquierdo M.; Jiménez L.; Rojas A.

Abstract

Given a compact Riemann surface X with an action of a finite group G, the group algebra Q[G] provides an isogenous decomposition of its Jacobian variety JX, known as the group algebra decomposition of JX. We consider the set of equisymmetric Riemann surfaces M(2n -1, D-2n, theta) for all n >= 2. We study the group algebra decomposition of the Jacobian JX of every curve X is an element of M (2n - 1, D-2n, theta) for all admissible actions, and we provide affine models for them. We use the topological equivalence of actions on the curves to obtain facts regarding its Jacobians. We describe some of the factors of JX as Jacobian (or Prym) varieties of intermediate coverings. Finally, we compute the dimension of the corresponding Shimura domains.

Más información

Título según WOS: Decomposition of Jacobian varieties of curves with dihedral actions via equisymmetric stratification
Título según SCOPUS: Decomposition of Jacobian varieties of curves with dihedral actions via equisymmetric stratification
Título de la Revista: REVISTA MATEMATICA IBEROAMERICANA
Volumen: 35
Número: 4
Editorial: EUROPEAN MATHEMATICAL SOC
Fecha de publicación: 2019
Página de inicio: 1259
Página final: 1279
Idioma: English
DOI:

10.4171/RMI/1084

Notas: ISI, SCOPUS