Pattern Spotting in Historical Documents Using Convolutional Models

Úbeda I.; Saavedra J.M.; Nicolas S.; Petitjean C.; Heutte L.

Abstract

Pattern spotting consists of searching in a collection of historical document images for occurrences of a graphical object using an image query. Contrary to object detection, no prior information nor predefined class is given about the query so training a model of the object is not feasible. In this paper, a convolutional neural network approach is proposed to tackle this problem. We use RetinaNet as a feature extractor to obtain multiscale embeddings of the regions of the documents and also for the queries. Experiments conducted on the DocExplore dataset show that our proposal is better at locating patterns and requires less storage for indexing images than the state-of-the-art system, but fails at retrieving multiple pages containing instances of the query.

Más información

Título según WOS: Pattern Spotting in Historical Documents Using Convolutional Models
Título según SCOPUS: Pattern spotting in historical documents using convolutional models
Título de la Revista: PROCEEDINGS OF THE 2019 WORKSHOP ON HISTORICAL DOCUMENT IMAGING AND PROCESSING (HIP' 19)
Editorial: ASSOC COMPUTING MACHINERY
Fecha de publicación: 2019
Página de inicio: 60
Página final: 65
Idioma: English
DOI:

10.1145/3352631.3352645

Notas: ISI, SCOPUS