A Bayesian approach for nonlinear regression models with continuous errors

De la Cruz-Mesia, R; Marshall G.

Abstract

In this paper we develop a Bayesian analysis for the nonlinear regression model with errors that follow a continuous autoregressive process. In this way, unequally spaced observations do not present a problem in the analysis. We employ the Gibbs sampler, (see Gelfand, A., Smith, A. (1990). Sampling based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85:398-409.), as the foundation for making Bayesian inferences. We illustrate these Bayesian inferences with an analysis of a real data-set. Using these same data, we contrast the Bayesian approach with a generalized least squares technique.

Más información

Título según WOS: A Bayesian approach for nonlinear regression models with continuous errors
Título según SCOPUS: A Bayesian approach for nonlinear regression models with continuous errors
Título de la Revista: COMMUNICATIONS IN STATISTICS-THEORY AND METHODS
Volumen: 32
Número: 8
Editorial: TAYLOR & FRANCIS INC
Fecha de publicación: 2003
Página de inicio: 1631
Página final: 1646
Idioma: English
URL: http://www.tandfonline.com/doi/abs/10.1081/STA-120022248
DOI:

10.1081/STA-120022248

Notas: ISI, SCOPUS