A Bayesian approach for nonlinear regression models with continuous errors
Abstract
In this paper we develop a Bayesian analysis for the nonlinear regression model with errors that follow a continuous autoregressive process. In this way, unequally spaced observations do not present a problem in the analysis. We employ the Gibbs sampler, (see Gelfand, A., Smith, A. (1990). Sampling based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85:398-409.), as the foundation for making Bayesian inferences. We illustrate these Bayesian inferences with an analysis of a real data-set. Using these same data, we contrast the Bayesian approach with a generalized least squares technique.
Más información
| Título según WOS: | A Bayesian approach for nonlinear regression models with continuous errors |
| Título según SCOPUS: | A Bayesian approach for nonlinear regression models with continuous errors |
| Título de la Revista: | COMMUNICATIONS IN STATISTICS-THEORY AND METHODS |
| Volumen: | 32 |
| Número: | 8 |
| Editorial: | TAYLOR & FRANCIS INC |
| Fecha de publicación: | 2003 |
| Página de inicio: | 1631 |
| Página final: | 1646 |
| Idioma: | English |
| URL: | http://www.tandfonline.com/doi/abs/10.1081/STA-120022248 |
| DOI: |
10.1081/STA-120022248 |
| Notas: | ISI, SCOPUS |