A Bayesian approach for nonlinear regression models with continuous errors
Abstract
In this paper we develop a Bayesian analysis for the nonlinear regression model with errors that follow a continuous autoregressive process. In this way, unequally spaced observations do not present a problem in the analysis. We employ the Gibbs sampler, (see Gelfand, A., Smith, A. (1990). Sampling based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85:398-409.), as the foundation for making Bayesian inferences. We illustrate these Bayesian inferences with an analysis of a real data-set. Using these same data, we contrast the Bayesian approach with a generalized least squares technique.
Más información
Título según WOS: | A Bayesian approach for nonlinear regression models with continuous errors |
Título según SCOPUS: | A Bayesian approach for nonlinear regression models with continuous errors |
Título de la Revista: | COMMUNICATIONS IN STATISTICS-THEORY AND METHODS |
Volumen: | 32 |
Número: | 8 |
Editorial: | TAYLOR & FRANCIS INC |
Fecha de publicación: | 2003 |
Página de inicio: | 1631 |
Página final: | 1646 |
Idioma: | English |
URL: | http://www.tandfonline.com/doi/abs/10.1081/STA-120022248 |
DOI: |
10.1081/STA-120022248 |
Notas: | ISI, SCOPUS |