H-matrix approximability of inverses of discretizations of the fractional Laplacian
Abstract
The integral version of the fractional Laplacian on a bounded domain is discretized by a Galerkin approximation based on piecewise linear functions on a quasiuniform mesh. We show that the inverse of the associated stiffness matrix can be approximated by blockwise low-rank matrices at an exponential rate in the block rank.
Más información
| Título según WOS: | H-matrix approximability of inverses of discretizations of the fractional Laplacian |
| Título según SCOPUS: | H -matrix approximability of inverses of discretizations of the fractional Laplacian |
| Título de la Revista: | ADVANCES IN COMPUTATIONAL MATHEMATICS |
| Volumen: | 45 |
| Número: | 05-jun |
| Editorial: | Springer |
| Fecha de publicación: | 2019 |
| Página de inicio: | 2893 |
| Página final: | 2919 |
| Idioma: | English |
| DOI: |
10.1007/s10444-019-09718-5 |
| Notas: | ISI, SCOPUS |