Gagliardo-Nirenberg-Sobolev inequalities for convex domains in R-d
Abstract
A special type of Gagliardo-Nirenberg-Sobolev (GNS) inequalities in R-d has played a key role in several proofs of Lieb-Thirring inequalities. Recently, a need for GNS inequalities in convex domains of R-d, in particular for cubes, has arisen. The purpose of this manuscript is two-fold. First we prove a GNS inequality for convex domains, with explicit constants which depend on the geometry of the domain. Later, using the discrete version of Rumin's method, we prove GNS inequalities on cubes with improved constants.
Más información
Título según WOS: | Gagliardo-Nirenberg-Sobolev inequalities for convex domains in R-d |
Título según SCOPUS: | Gagliardo-Nirenberg-Sobolev inequalities for convex domains in Rd |
Título de la Revista: | MATHEMATICAL RESEARCH LETTERS |
Volumen: | 26 |
Número: | 5 |
Editorial: | INTERNATIONAL PRESS |
Fecha de publicación: | 2019 |
Página de inicio: | 1291 |
Página final: | 1312 |
Idioma: | English |
DOI: |
10.4310/MRL.2019.v26.n5.a3 |
Notas: | ISI, SCOPUS |