Gagliardo-Nirenberg-Sobolev inequalities for convex domains in R-d

Abstract

A special type of Gagliardo-Nirenberg-Sobolev (GNS) inequalities in R-d has played a key role in several proofs of Lieb-Thirring inequalities. Recently, a need for GNS inequalities in convex domains of R-d, in particular for cubes, has arisen. The purpose of this manuscript is two-fold. First we prove a GNS inequality for convex domains, with explicit constants which depend on the geometry of the domain. Later, using the discrete version of Rumin's method, we prove GNS inequalities on cubes with improved constants.

Más información

Título según WOS: Gagliardo-Nirenberg-Sobolev inequalities for convex domains in R-d
Título según SCOPUS: Gagliardo-Nirenberg-Sobolev inequalities for convex domains in Rd
Título de la Revista: MATHEMATICAL RESEARCH LETTERS
Volumen: 26
Número: 5
Editorial: INTERNATIONAL PRESS
Fecha de publicación: 2019
Página de inicio: 1291
Página final: 1312
Idioma: English
DOI:

10.4310/MRL.2019.v26.n5.a3

Notas: ISI, SCOPUS