Astroinformatics-based search for globular clusters in the Fornax Deep Survey

Angora G.; Brescia M.; Cavuoti S.; Paolillo M.; Longo G.; Cantiello M.; Capaccioli M.; D’Abrusco R.; D’Ago G.; Hilker M.; Iodice E.; Mieske S.; Napolitano N.; Peletier R.; Pota, V; et. al.

Abstract

In the last years, Astroinformatics has become a well-defined paradigm for many fields of Astronomy. In this work, we demonstrate the potential of a multidisciplinary approach to identify globular clusters (GCs) in the Fornax cluster of galaxies taking advantage of multiband photometry produced by the VLT Survey Telescope using automatic self-adaptive methodologies. The data analysed in thiswork consist of deep, multiband, partially overlapping images centred on the core of the Fornax cluster. In this work, we use a Neural Gas model, a pure clustering machine learning methodology, to approach the GC detection, while a novel feature selection method (Phi LAB) is exploited to perform the parameter space analysis and optimization. We demonstrate that the use of an Astroinformatics-based methodology is able to provide GC samples that are comparable, in terms of purity and completeness with those obtained using single-band HST data and two approaches based, respectively, on a morpho-photometric and a Principal Component Analysis using the same data discussed in this work.

Más información

Título según WOS: Astroinformatics-based search for globular clusters in the Fornax Deep Survey
Título según SCOPUS: Astroinformatics-based search for globular clusters in the Fornax Deep Survey
Título de la Revista: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volumen: 490
Número: 3
Editorial: OXFORD UNIV PRESS
Fecha de publicación: 2019
Página de inicio: 4080
Página final: 4106
Idioma: English
DOI:

10.1093/mnras/stz2801

Notas: ISI, SCOPUS