Buchi's Problem in Modular Arithmetic for Arbitrary Quadratic Polynomials
Abstract
Given a prime p >= 5 and an integer s >= 1,we show that there exists an integer M such that for any quadratic polynomial f with coefficients in the ring of integers modulo p(S), such that f is not a square, if a sequence (f(l), ... f(N)) is a sequence of squares, then N is at most M. We also provide some explicit formulas for the optimal M.
Más información
| Título según WOS: | Buchi's Problem in Modular Arithmetic for Arbitrary Quadratic Polynomials |
| Título según SCOPUS: | Büchi's Problem in Modular Arithmetic for Arbitrary Quadratic Polynomials |
| Título de la Revista: | CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES |
| Volumen: | 62 |
| Número: | 4 |
| Editorial: | CAMBRIDGE UNIV PRESS |
| Fecha de publicación: | 2019 |
| Página de inicio: | 876 |
| Página final: | 885 |
| Idioma: | English |
| DOI: |
10.4153/S0008439519000225 |
| Notas: | ISI, SCOPUS |