Buchi's Problem in Modular Arithmetic for Arbitrary Quadratic Polynomials

Vidaux X.; Vsemirnov M.

Abstract

Given a prime p >= 5 and an integer s >= 1,we show that there exists an integer M such that for any quadratic polynomial f with coefficients in the ring of integers modulo p(S), such that f is not a square, if a sequence (f(l), ... f(N)) is a sequence of squares, then N is at most M. We also provide some explicit formulas for the optimal M.

Más información

Título según WOS: Buchi's Problem in Modular Arithmetic for Arbitrary Quadratic Polynomials
Título según SCOPUS: Büchi's Problem in Modular Arithmetic for Arbitrary Quadratic Polynomials
Título de la Revista: CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES
Volumen: 62
Número: 4
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 2019
Página de inicio: 876
Página final: 885
Idioma: English
DOI:

10.4153/S0008439519000225

Notas: ISI, SCOPUS