Deep semi-supervised generative adversarial fault diagnostics of rolling element bearings

Verstraete D.B.; Droguett E.L.; Meruane V.; Modarres M.; Ferrada, A.

Abstract

With the availability of cheaper multisensor suites, one has access to massive and multidimensional datasets that can and should be used for fault diagnosis. However, from a time, resource, engineering, and computational perspective, it is often cost prohibitive to label all the data streaming into a database in the context of big machinery data, that is, massive multidimensional data. Therefore, this article proposes both a fully unsupervised and a semi-supervised deep learning enabled generative adversarial network-based methodology for fault diagnostics. Two public datasets of vibration data from rolling element bearings are used to evaluate the performance of the proposed methodology for fault diagnostics. The results indicate that the proposed methodology is a promising approach for both unsupervised and semi-supervised fault diagnostics.

Más información

Título según WOS: Deep semi-supervised generative adversarial fault diagnostics of rolling element bearings
Título según SCOPUS: Deep semi-supervised generative adversarial fault diagnostics of rolling element bearings
Título de la Revista: STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL
Volumen: 19
Número: 2
Editorial: SAGE PUBLICATIONS LTD
Fecha de publicación: 2020
Página de inicio: 390
Página final: 411
Idioma: English
DOI:

10.1177/1475921719850576

Notas: ISI, SCOPUS