On an elliptic problem with boundary blow-up and a singular weight: the radial case
Abstract
In this work we consider the non-autonomous problem ?u = a(x)u m in the unit ball B ? ?N, with the boundary condition u|?B = +?, and m > 0. Assuming that a is a continuous radial function with a(x) ? C0 dist(x, ?B) -? as dist(x, ? B) ? 0, for some C0 > 0, ? > 0, we completely determine the issues of existence, multiplicity and behaviour near the boundary for radial positive solutions, in terms of the values of m and ?. The case 0 < m ? 1, as well as estimates for solutions to the linear problem m = 1, are a significant part of our results.
Más información
Título según WOS: | On an elliptic problem with boundary blow-up and a singular weight: the radial case |
Título según SCOPUS: | On an elliptic problem with boundary blow-up and a singular weight: The radial case |
Título de la Revista: | PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS |
Volumen: | 133 |
Número: | 6 |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2003 |
Página de inicio: | 1283 |
Página final: | 1297 |
Idioma: | English |
URL: | http://www.journals.cambridge.org/abstract_S0308210500002936 |
DOI: |
10.1017/S0308210500002936 |
Notas: | ISI, SCOPUS |