Wave functions for quantum integrable particle systems via partial confluences of multivariate hypergeometric functions
Abstract
Starting from the hyperoctahedral multivariate hypergeometric function of Heckman and Opdam (associated with the BCn root system), we arrive-via partial confluent limits in the sense of Oshima and Shimeno-at solutions of the eigenvalue equations for the quantum Toda chain with one-sided boundary perturbations of Poschl-Teller type and for the hyperbolic quantum Calogero-Sutherland system in a Morse potential. With the aid of corresponding degenerations of the (bispectral dual) difference equations for the Heckman-Opdam hyperoctahedral hypergeometric function, it is deduced that the eigensolutions in question are holomorphic in the spectral variable. (C) 2019 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Wave functions for quantum integrable particle systems via partial confluences of multivariate hypergeometric functions |
Título según SCOPUS: | Wave functions for quantum integrable particle systems via partial confluences of multivariate hypergeometric functions |
Título de la Revista: | JOURNAL OF DIFFERENTIAL EQUATIONS |
Volumen: | 268 |
Número: | 8 |
Editorial: | Elsevier |
Fecha de publicación: | 2020 |
Página de inicio: | 4525 |
Página final: | 4543 |
Idioma: | English |
DOI: |
10.1016/j.jde.2019.10.033 |
Notas: | ISI, SCOPUS |