Wave functions for quantum integrable particle systems via partial confluences of multivariate hypergeometric functions

Abstract

Starting from the hyperoctahedral multivariate hypergeometric function of Heckman and Opdam (associated with the BCn root system), we arrive-via partial confluent limits in the sense of Oshima and Shimeno-at solutions of the eigenvalue equations for the quantum Toda chain with one-sided boundary perturbations of Poschl-Teller type and for the hyperbolic quantum Calogero-Sutherland system in a Morse potential. With the aid of corresponding degenerations of the (bispectral dual) difference equations for the Heckman-Opdam hyperoctahedral hypergeometric function, it is deduced that the eigensolutions in question are holomorphic in the spectral variable. (C) 2019 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Wave functions for quantum integrable particle systems via partial confluences of multivariate hypergeometric functions
Título según SCOPUS: Wave functions for quantum integrable particle systems via partial confluences of multivariate hypergeometric functions
Título de la Revista: JOURNAL OF DIFFERENTIAL EQUATIONS
Volumen: 268
Número: 8
Editorial: Elsevier
Fecha de publicación: 2020
Página de inicio: 4525
Página final: 4543
Idioma: English
DOI:

10.1016/j.jde.2019.10.033

Notas: ISI, SCOPUS