First-order least-squares method for the obstacle problem
Abstract
We define and analyse a least-squares finite element method for a first-order reformulation of the obstacle problem. Moreover, we derive variational inequalities that are based on similar but non-symmetric bilinear forms. A priori error estimates including the case of non-conforming convex sets are given and optimal convergence rates are shown for the lowest-order case. We provide a posteriori bounds that can be used as error indicators in an adaptive algorithm. Numerical studies are presented.
Más información
Título según WOS: | First-order least-squares method for the obstacle problem |
Título según SCOPUS: | First-order least-squares method for the obstacle problem |
Título de la Revista: | NUMERISCHE MATHEMATIK |
Volumen: | 144 |
Número: | 1 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2020 |
Página de inicio: | 55 |
Página final: | 88 |
Idioma: | English |
DOI: |
10.1007/s00211-019-01084-0 |
Notas: | ISI, SCOPUS |