Nonnegative realizability with Jordan structure
Abstract
A general method is given for merging blocks in the Jordan canonical form of a nonnegative matrix. As a consequence, results, more general than any prior ones, are given for the universal realizability of spectra, that is, spectra which are realizable by a nonnegative matrix for each possible Jordan canonical form allowed by the spectrum. In particular, we generalize a classical result due to Minc, regarding positive diagonalizable matrices. For example, any spectrum that is diagonalizably realizable by a nonnegative matrix with mostly positive off-diagonal entries is universally realizable. (C) 2019 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | Nonnegative realizability with Jordan structure |
| Título según SCOPUS: | Nonnegative realizability with Jordan structure |
| Volumen: | 587 |
| Fecha de publicación: | 2020 |
| Página de inicio: | 302 |
| Página final: | 313 |
| Idioma: | English |
| DOI: |
10.1016/j.laa.2019.11.016 |
| Notas: | ISI, SCOPUS |