Nonnegative realizability with Jordan structure

Johnson, C. R.; Julio A.I.; Soto R.L.

Abstract

A general method is given for merging blocks in the Jordan canonical form of a nonnegative matrix. As a consequence, results, more general than any prior ones, are given for the universal realizability of spectra, that is, spectra which are realizable by a nonnegative matrix for each possible Jordan canonical form allowed by the spectrum. In particular, we generalize a classical result due to Minc, regarding positive diagonalizable matrices. For example, any spectrum that is diagonalizably realizable by a nonnegative matrix with mostly positive off-diagonal entries is universally realizable. (C) 2019 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Nonnegative realizability with Jordan structure
Título según SCOPUS: Nonnegative realizability with Jordan structure
Volumen: 587
Fecha de publicación: 2020
Página de inicio: 302
Página final: 313
Idioma: English
DOI:

10.1016/j.laa.2019.11.016

Notas: ISI, SCOPUS