Extremal graphs for Estrada indices
Abstract
Let g be a simple undirected connected graph. The signless Laplacian Estrada, Laplacian Estrada and Estrada indices of a graph Q is the sum of the exponentials of the signless Laplacian eigenvalues, Laplacian eigenvalues and eigenvalues of g, respectively. The present work derives an upper bound for the Estrada index of a graph as a function of its chromatic number, in the family of graphs whose color classes have order not less than a fixed positive integer. The graphs for which the upper bound is tight is obtained. Additionally, an upper bound for the Estrada Index of the complement of a graph in the previous family of graphs with two color classes is given. A Nordhaus-Gaddum type inequality for the Laplacian Estrada index when Q is a bipartite graph with color classes of order not less than 2, is presented. Moreover, a sharp upper bound for the Estrada index of the line graph and for the signless Laplacian index of a graph in terms of connectivity is obtained. (C) 2019 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Extremal graphs for Estrada indices |
Título según SCOPUS: | Extremal graphs for Estrada indices |
Volumen: | 588 |
Fecha de publicación: | 2020 |
Página de inicio: | 54 |
Página final: | 73 |
Idioma: | English |
DOI: |
10.1016/j.laa.2019.10.029 |
Notas: | ISI, SCOPUS |