Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges

Addor N.; Do H.X.; Alvarez-Garreton C.; Coxon G.; Fowler K.; Mendoza, P. A.

Abstract

Large-sample hydrology (LSH) relies on data from large sets (tens to thousands) of catchments to go beyond individual case studies and derive robust conclusions on hydrological processes and models. Numerous LSH datasets have recently been released, covering a wide range of regions and relying on increasingly diverse data sources to characterize catchment behaviour. These datasets offer novel opportunities, yet they are also limited by their lack of comparability, uncertainty estimates and characterization of human impacts. This article (i) underscores the key role of LSH datasets in hydrological studies, (ii) provides a review of currently available LSH datasets, (iii) highlights current limitations of LSH datasets and (iv) proposes guidelines and coordinated actions to overcome these limitations. These guidelines and actions aim to standardize and automatize the creation of LSH datasets worldwide, and to enhance the reproducibility and comparability of hydrological studies.

Más información

Título según WOS: Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges
Título según SCOPUS: Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges
Título de la Revista: HYDROLOGICAL SCIENCES JOURNAL
Volumen: 65
Número: 5
Editorial: TAYLOR & FRANCIS LTD
Fecha de publicación: 2020
Página de inicio: 712
Página final: 725
Idioma: English
DOI:

10.1080/02626667.2019.1683182

Notas: ISI, SCOPUS