On the spectra of some g-circulant matrices and applications to nonnegative inverse eigenvalue problem
Abstract
A g-circulant matrix A, is defined as a matrix of order n where the elements of each row of A are identical to those of the previous row, but are moved g positions to the right and wrapped around. Using number theory, certain spectra of g-circulant real matrices are given explicitly. The obtained results are applied to Nonnegative Inverse Eigenvalue Problem to construct nonnegative, g-circulant matrices with given appropriated spectrum. Additionally, some g-circulant matrices are reconstructed from its main diagonal entries. (C) 2019 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | On the spectra of some g-circulant matrices and applications to nonnegative inverse eigenvalue problem |
Título según SCOPUS: | On the spectra of some g-circulant matrices and applications to nonnegative inverse eigenvalue problem |
Volumen: | 590 |
Fecha de publicación: | 2020 |
Página de inicio: | 1 |
Página final: | 21 |
Idioma: | English |
DOI: |
10.1016/j.laa.2019.12.029 |
Notas: | ISI, SCOPUS |