On the spectra of some g-circulant matrices and applications to nonnegative inverse eigenvalue problem

Andrade E.; Arrieta L.; Manzaneda C.; Robbiano M.

Abstract

A g-circulant matrix A, is defined as a matrix of order n where the elements of each row of A are identical to those of the previous row, but are moved g positions to the right and wrapped around. Using number theory, certain spectra of g-circulant real matrices are given explicitly. The obtained results are applied to Nonnegative Inverse Eigenvalue Problem to construct nonnegative, g-circulant matrices with given appropriated spectrum. Additionally, some g-circulant matrices are reconstructed from its main diagonal entries. (C) 2019 Elsevier Inc. All rights reserved.

Más información

Título según WOS: On the spectra of some g-circulant matrices and applications to nonnegative inverse eigenvalue problem
Título según SCOPUS: On the spectra of some g-circulant matrices and applications to nonnegative inverse eigenvalue problem
Volumen: 590
Fecha de publicación: 2020
Página de inicio: 1
Página final: 21
Idioma: English
DOI:

10.1016/j.laa.2019.12.029

Notas: ISI, SCOPUS