Nonuniform almost reducibility of nonautonomous linear differential equations

Castañeda Á.; Huerta I.

Abstract

We prove that a linear nonautonomous differential system with nonuniform hyperbolicity on the half line can be written as diagonal system with a perturbation which is small enough. Moreover we show that the diagonal terms are contained in the nonuniform exponential dichotomy spectrum. For this purpose we introduce the concepts of nonuniform almost reducibility and nonuniform contractibility which are generalizations of these notions originally defined in a uniform context. (C) 2020 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Nonuniform almost reducibility of nonautonomous linear differential equations
Título según SCOPUS: Nonuniform almost reducibility of nonautonomous linear differential equations
Título de la Revista: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Volumen: 485
Número: 2
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2020
Idioma: English
DOI:

10.1016/j.jmaa.2019.123822

Notas: ISI, SCOPUS