Uniform decay rates for a suspension bridge with locally distributed nonlinear damping
Abstract
We study a nonlocal evolution equation modeling the deformation of a bridge, either a footbridge or a suspension bridge. Contrarily to the previous literature we prove the asymptotic stability of the considered model with a minimum amount of damping which represents less cost of material. The result is also numerically proved. (C) 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Más información
Título según WOS: | Uniform decay rates for a suspension bridge with locally distributed nonlinear damping |
Título según SCOPUS: | Uniform decay rates for a suspension bridge with locally distributed nonlinear damping |
Título de la Revista: | JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS |
Volumen: | 357 |
Número: | 4 |
Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
Fecha de publicación: | 2020 |
Página de inicio: | 2388 |
Página final: | 2419 |
Idioma: | English |
DOI: |
10.1016/j.jfranklin.2020.01.004 |
Notas: | ISI, SCOPUS |