McGehee Blow-Up of the Kepler Problem on Surfaces of Constant Curvature
Abstract
In this work we address the local behaviour at collision of the Kepler problem on surfaces of constant curvature. A full description of dynamics in the extended energy surface is given relying in the energy and mass values. Our analysis reveals remarkable differences with the classical Newtonian case. In particular, the collision surface does not coincides with the null energy surface.
Más información
Título según WOS: | McGehee Blow-Up of the Kepler Problem on Surfaces of Constant Curvature |
Título según SCOPUS: | McGehee Blow-Up of the Kepler Problem on Surfaces of Constant Curvature |
Título de la Revista: | QUALITATIVE THEORY OF DYNAMICAL SYSTEMS |
Volumen: | 19 |
Número: | 1 |
Editorial: | SPRINGER BASEL AG |
Fecha de publicación: | 2020 |
Idioma: | English |
DOI: |
10.1007/s12346-020-00349-6 |
Notas: | ISI, SCOPUS |