Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models
Abstract
This paper focuses on the numerical approximation of the solutions of a class of non-local systems in one space dimension, arising in traffic modeling. We propose alternative simple schemes by splitting the non-local conservation laws into two different equations, namely the Lagrangian and the remap steps. We provide some properties and estimates recovered by approximating the problem with the Lagrangian-antidiffusive remap (L-AR) scheme, and we prove the convergence to weak solutions in the scalar case. Finally, we show some numerical simulations illustrating the efficiency of the L-AR schemes in comparison with classical first- and second-order numerical schemes.
Más información
| Título según WOS: | Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models |
| Título según SCOPUS: | Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models |
| Título de la Revista: | COMPUTATIONAL & APPLIED MATHEMATICS |
| Volumen: | 39 |
| Número: | 2 |
| Editorial: | SPRINGER HEIDELBERG |
| Fecha de publicación: | 2020 |
| Idioma: | English |
| DOI: |
10.1007/s40314-020-1097-9 |
| Notas: | ISI, SCOPUS |