Making sense of parameter estimation and model simulation in bioprocesses

Sadino-Riquelme M.C.; Rivas J.; Jeison D.; Hayes R.E.; Donoso-Bravo A.

Abstract

Most articles that report fitted parameters for kinetic models do not include meaningful statistical information. This study demonstrates the importance of reporting a complete statistical analysis and shows a methodology to perform it, using functionalities implemented in computational tools. As an example, alginate production is studied in a batch stirred-tank fermenter and modeled using the kinetic model proposed by Klimek and Ollis (1980). The model parameters and their 95% confidence intervals are estimated by nonlinear regression. The significance of the parameters value is checked using a hypothesis test. The uncertainty of the parameters is propagated to the output model variables through prediction intervals, showing that the kinetic model of Klimek and Ollis (1980) can simulate with high certainty the dynamic of the alginate production process. Finally, the results obtained in other studies are compared to show how the lack of statistical analysis can hold back a deeper understanding about bioprocesses.

Más información

Título según WOS: Making sense of parameter estimation and model simulation in bioprocesses
Título según SCOPUS: Making sense of parameter estimation and model simulation in bioprocesses
Título de la Revista: BIOTECHNOLOGY AND BIOENGINEERING
Volumen: 117
Número: 5
Editorial: Wiley
Fecha de publicación: 2020
Página de inicio: 1357
Página final: 1366
Idioma: English
DOI:

10.1002/bit.27294

Notas: ISI, SCOPUS