In Vitro Inhibition of Hsp90 Protein by Benzothiazoloquinazolinequinones Is Enhanced in The Presence of Ascorbate. A Preliminary In Vivo Antiproliferative Study

Valderrama J.A.; Ríos D.; Muccioli, G. G.; Calderon P.B.; Benites J.

Abstract

A series of benzo[g]benzothiazolo[2,3-b]quinazoline-7,12-quinones were prepared from 2-acylnaphthohydroquinones and 2-aminobenzothiazoles and were evaluated for their in vitro antiproliferative activity. After screening using the MTT reduction assay, their IC50 values were calculated on a panel of cancer cells (T24, DU-145, MCF-7). Current standard anticancer drugs were included as control, and their calculated IC50 values were 7.8 and 23.5 mu M for 5-fluorouracil and tamoxifen, respectively. Non-cancer cells (AG1523) were included to assess cancer cell sensitivity and drug selectivity. Four members of the series, with IC50 values from 0.11 to 2.98 mu M, were chosen for further assays. The selected quinones were evaluated regarding their effects on cancer cell proliferation (clonogenic assay) and on Hsp90 and poly(ADPribose)polymerase (PARP) protein integrity. The most active compound (i.e., 15) substantially inhibited colony forming unit (CFU) formation at 0.25 mu M. In the presence of ascorbate, it induced an oxidative cleavage of Hsp90 but had no effect on PARP protein integrity. In an in vivo animal model, it discreetly increased the mean survival time (m.s.t.) of tumor-bearing mice. In light of these results, compound 15 represents a potential lead-molecule to be further developed.

Más información

Título según WOS: In Vitro Inhibition of Hsp90 Protein by Benzothiazoloquinazolinequinones Is Enhanced in The Presence of Ascorbate. A Preliminary In Vivo Antiproliferative Study
Título según SCOPUS: In vitro inhibition of Hsp90 protein by benzothiazoloquinazolinequinones is enhanced in the presence of ascorbate. a preliminary in vivo antiproliferative study
Título de la Revista: MOLECULES
Volumen: 25
Número: 4
Editorial: MDPI
Fecha de publicación: 2020
Idioma: English
DOI:

10.3390/molecules25040953

Notas: ISI, SCOPUS