Bivariate polynomial injections and elliptic curves

Abstract

For every number field k, we construct an affine algebraic surface X over k with a Zariski dense set of k-rational points, and a regular function f on X inducing an injective map X(k)-> k on k-rational points. In fact, given any elliptic curve E of positive rank over k, we can take X=V x V with V a suitable affine open set of E. The method of proof combines value distribution theory for complex holomorphic maps with results of Faltings on rational points in sub-varieties of abelian varieties.

Más información

Título según WOS: Bivariate polynomial injections and elliptic curves
Título según SCOPUS: Bivariate polynomial injections and elliptic curves
Título de la Revista: SELECTA MATHEMATICA-NEW SERIES
Volumen: 26
Número: 2
Editorial: SPRINGER INTERNATIONAL PUBLISHING AG
Fecha de publicación: 2020
Idioma: English
DOI:

10.1007/s00029-020-0548-x

Notas: ISI, SCOPUS