Bivariate polynomial injections and elliptic curves
Abstract
For every number field k, we construct an affine algebraic surface X over k with a Zariski dense set of k-rational points, and a regular function f on X inducing an injective map X(k)-> k on k-rational points. In fact, given any elliptic curve E of positive rank over k, we can take X=V x V with V a suitable affine open set of E. The method of proof combines value distribution theory for complex holomorphic maps with results of Faltings on rational points in sub-varieties of abelian varieties.
Más información
Título según WOS: | Bivariate polynomial injections and elliptic curves |
Título según SCOPUS: | Bivariate polynomial injections and elliptic curves |
Título de la Revista: | SELECTA MATHEMATICA-NEW SERIES |
Volumen: | 26 |
Número: | 2 |
Editorial: | SPRINGER INTERNATIONAL PUBLISHING AG |
Fecha de publicación: | 2020 |
Idioma: | English |
DOI: |
10.1007/s00029-020-0548-x |
Notas: | ISI, SCOPUS |