Uniform W-1,W-p estimates for an elliptic operator with Robin boundary condition in a C-1 domain
Abstract
We consider the Robin boundary value problem div(A del u) = div f + F in Omega, a C-1 domain, with (A del u - f) . n + alpha u = g on Gamma, where the matrix A belongs to VMO(R-3), and discover the uniform estimates on parallel to u parallel to (W1,p(Omega)), with 1 < p < infinity, independent of alpha. At the difference with the case p = 2, which is simpler, we call here the weak reverse Holder inequality. This estimates show that the solution of the Robin problem converges strongly to the solution of the Dirichlet (resp. Neumann) problem in corresponding spaces when the parameter alpha tends to infinity (resp. 0).
Más información
Título según WOS: | Uniform W-1,W-p estimates for an elliptic operator with Robin boundary condition in a C-1 domain |
Título según SCOPUS: | Uniform W1 , p estimates for an elliptic operator with Robin boundary condition in a C1 domain |
Título de la Revista: | CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS |
Volumen: | 59 |
Número: | 2 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2020 |
Idioma: | English |
DOI: |
10.1007/s00526-020-1713-y |
Notas: | ISI, SCOPUS |