Determinantal Point Process Mixtures Via Spectral Density Approach

Bianchini I.; Guglielmi A.; Quintana, F. A.

Abstract

We consider mixture models where location parameters are a priori encouraged to be well separated. We explore a class of determinantal point process (DPP) mixture models, which provide the desired notion of separation or repulsion. Instead of using the rather restrictive case where analytical results are partially available, we adopt a spectral representation from which approximations to the DPP density functions can be readily computed. For the sake of concreteness the presentation focuses on a power exponential spectral density, but the proposed approach is in fact quite general. We later extend our model to incorporate covariate information in the likelihood and also in the assignment to mixture components, yielding a trade-off between repulsiveness of locations in the mixtures and attraction among subjects with similar covariates. We develop full Bayesian inference, and explore model properties and posterior behavior using several simulation scenarios and data illustrations.

Más información

Título según WOS: Determinantal Point Process Mixtures Via Spectral Density Approach
Título según SCOPUS: Determinantal point process mixtures via spectral density approach
Título de la Revista: BAYESIAN ANALYSIS
Volumen: 15
Número: 1
Editorial: INT SOC BAYESIAN ANALYSIS
Fecha de publicación: 2020
Página de inicio: 187
Página final: 214
Idioma: English
DOI:

10.1214/19-BA1150

Notas: ISI, SCOPUS