An Entropy Stable Scheme for the Multiclass Lighthill-Whitham-Richards Traffic Model

Burger, R; Torres, H; Vega, CA

Keywords: system of conservation laws, Multiclass Lighthill-Whitham-Richards traffic model, entropy conservative flux, entropy stable scheme

Abstract

An entropy conservative (EC) numerical flux for the multiclass Lighthill-Whitham-Richards (MCLWR) kinematic traffic model based on the general framework by Tadmor [E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws, I, Math. Comput., 49 (1987), pp. 91-103] is proposed. The approach exploits the existence of an entropy pair for a particular form of this model. The construction of EC fluxes is of interest since in combination with numerical diffusion terms they allow one to design entropy stable schemes for the MCLWR model. In order to obtain a higher-order accurate scheme and control oscillations near discontinuities, a third-order WENO reconstruction recently proposed by Ray [D. Ray, Third-order entropy stable scheme for the compressible Euler equations, in C. Klingenberg and M. Westdickenberg (eds.), Springer Proc. Math. Stat., 237, pp. 503-515] is used. Numerical experiments for different classes of drivers are presented to test the performance of the entropy stable scheme constructed with the entropy conservative flux proposed.

Más información

Título según WOS: An Entropy Stable Scheme for the Multiclass Lighthill-Whitham-Richards Traffic Model
Título de la Revista: ADVANCES IN APPLIED MATHEMATICS AND MECHANICS
Volumen: 11
Número: 5
Editorial: Global Science Press
Fecha de publicación: 2019
Página de inicio: 1022
Página final: 1047
Idioma: English
DOI:

10.4208/aamm.OA-2018-0189

Notas: ISI