The Brezis-Nirenberg problem near criticality in dimension 3
Abstract
We consider the problem of finding positive solutions of ?u+?u+uq=0 in a bounded, smooth domain ? in ?3, under zero Dirichlet boundary conditions. Here q is a number close to the critical exponent 5 and 0<?<?1. We analyze the role of Green's function of ?+? in the presence of solutions exhibiting single and multiple bubbling behavior at one point of the domain when either q or ? are regarded as parameters. As a special case of our results, we find that if ?* <?<?1, where ?* is the Brezis-Nirenberg number, i.e., the smallest value of ? for which least energy solutions for q = 5 exist, then this problem is solvable if q > 5 and q - 5 is sufficiently small. © 2004 Elsevier SAS. All rights reserved.
Más información
Título según WOS: | The Brezis-Nirenberg problem near criticality in dimension 3 |
Título según SCOPUS: | The Brezis-Nirenberg problem near criticality in dimension 3 |
Título de la Revista: | JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES |
Volumen: | 83 |
Número: | 12 |
Editorial: | ELSEVIER SCIENCE BV |
Fecha de publicación: | 2004 |
Página de inicio: | 1405 |
Página final: | 1456 |
Idioma: | English |
DOI: |
10.1016/j.matput.2004.02.007 |
Notas: | ISI, SCOPUS |