Stable decompositions of hp-BEM spaces and an optimal Schwarz preconditioner for the hypersingular integral operator in 3D
Keywords: domain decomposition, Preconditioning high order BEM, stable localization
Abstract
We consider fractional Sobolev spaces H-theta(Gamma), theta is an element of[0, 1] on a 2D surface Gamma. We show that functions in H-theta(Gamma) can be decomposed into contributions with local support in a stable way. Stability of the decomposition is inherited by piecewise polynomial subspaces. Applications include the analysis of additive Schwarz preconditioners for discretizations of the hypersingular integral operator by the p-version of the boundary element method with condition number bounds that are uniform in the polynomial degree p.
Más información
Título según WOS: | Stable decompositions of hp-BEM spaces and an optimal Schwarz preconditioner for the hypersingular integral operator in 3D |
Título de la Revista: | ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE |
Volumen: | 54 |
Número: | 1 |
Editorial: | EDP SCIENCES S A |
Fecha de publicación: | 2020 |
Página de inicio: | 145 |
Página final: | 180 |
Idioma: | English |
DOI: |
10.1051/m2an/2019041 |
Notas: | ISI |