Some results on symmetric circulant matrices and on symmetric centrosymmetric matrices
Abstract
We derive a readily computable sufficient condition for the existence of a nonnegative symmetric circulant matrix having a prescribed spectrum. Moreover, we prove that any set ?1??2 ?? ??nis the spectrum of real symmetric centrosymmetric matrices S1 and S2 such that for S1 an eigenvector corresponding to ?1 is the all ones vector and for S2 an eigenvector corresponding to ?i is the vector with components 1 and -1 alternately. The proof is constructive. Then, we derive an improved condition on {?k}k=1n such that S1 = ?1 E, where E is a stochastic symmetric centrosymmetric matrix. Finally, we propose an algorithm to compute the eigenvalues of some real symmetric centrosymmetric matrices. All the numerical procedures are based on the use of the Fast Fourier Transform. © 2004 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Some results on symmetric circulant matrices and on symmetric centrosymmetric matrices |
Título según SCOPUS: | Some results on symmetric circulant matrices and on symmetric centrosymmetric matrices |
Título de la Revista: | LINEAR ALGEBRA AND ITS APPLICATIONS |
Volumen: | 392 |
Número: | 01-mar |
Editorial: | Elsevier Science Inc. |
Fecha de publicación: | 2004 |
Página de inicio: | 211 |
Página final: | 233 |
Idioma: | English |
DOI: |
10.1016/j.laa.2004.06.013 |
Notas: | ISI, SCOPUS |